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Abstract. We present a method for calculating the photoproduction of jets at HERA based on Next to
Leading Logarithm QCD calculations. It is implemented in a Monte-Carlo generator which allows us to
easily compute any infra-red safe cross sections for 1 or 2 jet observables using various jet reconstruction
algorithms. We focus on the possibility of extracting the gluon contents of the photon and of the proton
from present and future H1 and ZEUS data.

1 Introduction

Electron-proton scattering at HERA is dominated by the
exchange of a quasi-real photon and a fraction of γ-p col-
lisions leads to the production of high pT jets. Therefore
these processes can be predicted by perturbative QCD
and they can be used to investigate the structure of the
photon in a way complementary to the study of the deep
inelastic scattering e-γ. In the latter case, one can measure
directly the quark density inside the photon whereas the
gluon density is constrained by the evolution equation. On
the contrary, in photoproduction, one can probe directly
the gluon contents of the photon.

Leading Logarithm (LL) results have been available for
a long time, but they are plagued by sizeable uncertainties
coming from the dependence on unphysical scales. There-
fore, Next to Leading Logarithm (NLL) calculations are
essential to describe the photoproduction of jets. To reach
this goal, we have adapted a method developped previ-
ously to deal with the production of two high-pT hadrons
in hadron collisions [1]. We apply it to build a Monte-
Carlo generator which is able to produce a set of partonic
events on which one can apply any jet reconstruction al-
gorithm to produce a set of jet events. With the latter we
can easily compute any infrared safe cross sections. This
technique gives a lot of flexibility to the study of various
jet algorithms and observables.

In particular we will apply it to the study of two jet
observables in which the distribution function variables
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are well constrained by kinematics. This allows us to dis-
entangle the distribution functions from the hard subpro-
cess more easily, because less convolutions are involved in
the calculation of the cross sections. Some results obtained
with this approach have already been reported in [2].

The paper is organised as follows. The theoretical
framework is described in Sect. 2. We also compare our ap-
proach with those of other authors. In Sect. 3 we present
some applications of our work to 1-jet cross sections and
we compare our results with those already obtained with
an analytical approach. Section 4 is devoted to the study
of 2-jet observables. We will examine whether it is possi-
ble to accurately measure the distribution functions of the
gluon in the photon and in the proton. In Sect. 5 we study
recent H1 and ZEUS data and the constraints they put on
the gluon distributions. The conclusions are in Sect. 6.

2 Description of the method

To calculate cross sections and isolate collinear and in-
frared singularities, we used a “phase space slicing
method”. We start from the 2 → 3 partonic squared ma-
trix elements and virtual corrections evaluated by Ellis
and Sexton [3]. Collinear and infra-red singularities lead
to poles in 1/ε and 1/ε2 when using dimensional regular-
isation. For a generic real process 1 + 2 → 3 + 4 + 5, at
least two partons have high transverse energy ET (3 and
4) and only one can be soft (5). In order to extract the sin-
gularities, we cut the phase space in several parts: part I
where ET5 is less than a given scale pTm and part II where
ET5 > pTm. Part II is divided in three parts: IIa (resp. IIb)
where parton 5 is within a cone around parton 3 (resp. 4)
called C3 (resp. C4), IIc where parton 5 is outside C3 and
C4. Parton 5 is in Ci if ((φ5−φi)2+(η5−ηi)2)

1
2 < Rc. Here

η = − log tan(θ/2) is the pseudo-rapidity and φ is the az-
imuthal angle. Part I contains infra-red singularities and
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collinear singularities in the initial state and parts IIa and
IIb contain collinear singularities in the final state whereas
part IIc is finite.

The contributions of regions I, IIa and IIb are calcu-
lated analytically and the infra-red singularities are can-
celled by the corresponding ones in the virtual terms. Ini-
tial collinear singularities are factorised in the parton dis-
tributions and the final collinear singularities disappear
when integrating on the relative momentum between par-
ton 5 and the parton with which it is collinear due to
energy momentum sum rules.

The finite parts remaining after the cancellation of sin-
gularities have been analytically computed using Maple
[4]. Large logarithms log pTm, log2 pTm and logRc appear
in the collinear and infrared contributions. They are can-
celled by similar terms from part IIc so that the total cross
section is independent of these unphysical cuts. It should
be noted that we have kept only the logarithmic terms in
the calculation of contributions I, IIa and IIb, neglecting
terms of order O(pTm log pTm), O(R2

c log pTm), and less
singular terms.

Using the Monte-Carlo package BASES [5], our pro-
gram generates quasi 2 → 2 events corresponding to
collinear, Born and virtual contributions (we take pTm �
Emin
T3,4

and Rc � 1) and 2 → 3 events corresponding to
part IIc. For the latter, a jet reconstruction algorithm is
applied. Finally, these events are histogrammed [6] in or-
der to give any cross sections we are interested in. We
have checked that the cross sections do not depend on the
unphysical cuts pTm and Rc in the region where 0.005 <
pTm < 0.1 and 0.01 < Rc < 0.1. From a numerical point
of view, the compensation between this cut dependence
arises mainly between positive real contribution of part
IIc and negative contributions of part I, IIa, IIb and vir-
tual corrections; we need to generate a sufficient number
of events in order to obtain a small error after the com-
pensation. We take the greatest possible values for the
cuts pTm and Rc (i.e. pTm = 0.1 GeV and Rc = 0.1) in
order to lower the size of this compensation which is then
typically of the order of 1 for 5.

This approach is applied to the direct and resolved
(proportional to the photon distribution functions) parts
of the cross section. However these contributions depend
on the convention adopted in the subtraction of the
collinear singularities. Unless explicitly specified, we use
the MS factorization and renormalization schemes.

Several authors have used similar approaches in the
calculation of jet-photoproduction cross sections. Harris
and Owens [7] also built an event generator; but their
phase slicing is based on cuts put on E5 (in the parton
CM) and on the Mandelstam variables of the subpro-
cess which control the collinear divergences. Klasen and
Kramer [8] introduced a single invariant cut on the Man-
delstam variables. On the other hand Frixione and Ridolfi
[9] made their calculations with the subtraction method
[10]. We made several numerical comparisons with the re-
sults of Klasen and Kramer, and found a good agreement.

Finally let us note that it is very convenient to use
variables ET , η and φ to define regions of the phase space

in which we perform analytical calculations. Indeed these
are the variables commonly used by experimentalists to
define jets and cuts in their phase space. If pTm and Rc

are smaller than respectively the lower bound of the trans-
verse momenta and the width of jets, we never integrate
(thus defining an inclusive measurement) in a phase space
region in which the experimentalists perform an exclusive
measurement. Since these experimental bounds are much
larger than the domain in which our neglecting non log-
arithmic terms is valid this is in fact not a constraint at
all. On the contrary with the invariant cut method, this
can only be achieved with very small cuts.

3 Single jets

In this section we present some numerical results for one-
jet cross sections in order to compare our predictions with
those obtained in a preceding paper [11]. Our inputs are
the following. At the HERA collider (

√
s = 300 GeV),

electrons produce photons with small virtuality Q2. We
use the kinematical conditions of the ZEUS collabora-
tion [12]: Q2

max = 1 GeV 2 and 0.2 < y < 0.85 where
y = Eγ/Ee. The spectrum of the quasi-real photon is ap-
proximated by the We acker-Williams formula.

F γ
e (y)

=
α

2π

{
1 + (1− y)2

y
log

Q2
max(1− y)

m2
e y2 − 2(1− y)

y

}
.(1)

For the proton distributions we take the CTEQ4M
parametrization [13] and for the photon distributions the
GRV parametrization [14] transformed to the MS scheme.
We use five flavours, Λ

(4)
MS

= 296 MeV, a renormalization
scale µ and a factorization scale M equal to the transverse
energy ET of the jet. For all our calculations, we use for
αs(µ) an exact solution of the two-loop renormalization
group equation, and not an expansion in log µ

Λ . The cross
sections are higher by some 2.5% when the exact αs(µ) is
used with µ ∼ 15 GeV.

Here we present results only for the resolved contri-
bution. Jets are defined with the kT -algorithm [15]. We
compare our results with those of a previous analytical
calculation [11], for the transverse momentum distribu-
tion in Fig. 1a and for the rapidity distribution in Fig. 1b.
We can see that the agreement is quite good between these
two sets of results. Similar comparisons hold for the direct
part.

We do not pursue the study of 1-jet cross sections, be-
cause they do not constrain the parton distributions as
well as the 2-jet cross sections do; the latter offer more
kinematical possibilities of control of the x-variable of
these distributions.

4 Dijets cross sections
and the photon structure function

In this section we study the dijet cross sections and put the
emphasis on variables and cross sections which give access
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Fig. 1a,b. a Single jet resolved cross section dσ/dET inte-
grated in the rapidity range .5 ≤ η ≤ 1.5 (histogram) and
compared to the analytical result of [11]. b dσ/dη for the re-
solved contribution with 20 GeV < ET < 21 GeV

to the gluon distribution functions. Comparison between
data and theory is postponed to Sect. 5. The dijet cross
section, as a function of the transverse energy ET3 and
the jet rapidities η3 and η4, is given by a product if the
subprocess is a 2 → 2 reaction (LL approximation)

dσ

dE2
T3dη3dη4

=
∑
a,b,c,d

xe F a
e (xe, M) xp F b

p (xp, M)

×dσab→cd(µ)
dt

, (2)

dσ/dt is the a + b → c + d cross section, and F a
e (F

b
p )

the parton distributions in the electron (proton) (xp =
ET3(eη3 + eη4)/2Ep and xe = ET3(e−η3 + e−η4)/2Ee);
M is the factorization scale and µ the renormalization
scale. The direct contribution corresponds to a = γ and
F γ
e is the Weizsäcker-Williams formula (1). In the resolved

case, F a
e is given by a convolution of F γ

e with the parton
distribution in the photon

F a
e (xe, M) =

∫ 1

0
dy dxγ F γ

e (y) F a
γ (xγ , M)

×δ(xγy − xe) . (3)

If the photon energy Eγ = yEe is known (for instance by
tagging the outgoing electron), we can measure xγ and
define the observable

dσ

dxγ
=
∑
a,b,c,d

xγ F a
γ (xγ , M)

∫ 1

0
dy dE2

T3dη3dη4 δ

×
(

xγ − ET3
(
e−η3 + e−η4

)
Eγ

)

× F γ
e (y) xp F b

p (xp, M)
dσ

dt
. (4)

Thus the dijet cross section written as a function of xγ
is proportional to the parton distribution in the photon
F a
γ (xγ). One observes that the direct contribution, with

F a
γ = δγaδ(1− xγ), leads to a peak in the cross section at

xγ = 1.

NLL QCD corrections to the LL expression (4) blur
its simple kinematics. There are contributions with three
jets in the final state, and we can no longer fix xγ =
5∑

i=3

ET ie
−ηi

2Eγ
, because the third jet is not observed. How-

ever we can follow the strategy of the ZEUS collaboration
[16] which defines the variable (jets 3 and 4 are the jets
with the highest transverse energies)

xobsγ =
(ET3e−η3 + ET4e−η4)

2Eγ
(5)

and observe the dijet cross section dσ/dxobsγ . However this
definition of xobsγ may lead to infrared sensitive cross sec-
tions. Indeed fixing ET3 and ET4 strongly constrains the
available phase space of the unobserved partons (for in-
stance parton 5 in Sect. 2) and forbids a complete compen-
sation between real and virtual NLL corrections. This re-
sults in cross sections containing, for instance, terms pro-
portional to log

(
1− (Emin

T4 /ET3
)2) after an integration

over ET4 from a lower bound Emin
T4 (smaller than ET3)

has been performed. The cross section is not defined at
ET3 = Emin

T4 , although it is integrable. Therefore the vari-
able xobsγ defined in (5) should only be used with cross
sections integrated over ET3 and ET4; moreover the inte-
gration range of ET3 and ET4 should not have the same
bounds. A discussion of this condition may be found in
[9].

For these reasons, we prefer the variable

xLLγ =
ET3 (e−η3 + e−η4)

2Eγ
(6)

which depends on the transverse energy of only one jet. It
can be associated with cross sections in which the energy
of the second jet is not measured. One observes that xLLγ
may take values larger than 1.0.

One must also observe that the cross sections dσ/dxLLγ
or dσ/dxobsγ are singular when xLLγ or xobsγ approaches 1.
Indeed we have the condition

1 ≥ ET3 e−η3 + ET4 e−η4 + ET5 e−η5

2Eγ

(the sign = corresponds to the direct case), which means

1− xobsγ ≥ ET5 e−η5

2Eγ
. (7)

When xobsγ goes to 1, the phase space of parton 5 is severely
restricted. This results in log(1 − xobsγ ) terms generated
by the NLL corrections. We obtain a similar result with
xLLγ → 1, although the phase space of parton 5 is less
severely constrained than by condition (7). Therefore we
expect a smoother behaviour of dσ/dxLLγ . This point can
be verified in Fig. 2 in which we display dσ/dxobsγ and
dσ/dxLLγ for the direct term. Besides the region very close
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Fig. 2. A comparison between the distributions dσ/dxLL
γ and

dσ/dxobs
γ , with the following cuts on the two high ET jets:

Eleading
T > 12 GeV and Etrailing

T > 10 GeV and 0 < η < 1,
and the kT -algorithm for the definition of jets

to 1.0, the two distributions are very similar 1. (The AFG
[17] and ABFOW [18] distributions with Nf = 4 have been
used for this calculation). Currently experimentalists in-
tegrate xobsγ over the range .75 ≤ xobsγ ≤ 1. Therefore
the singular behaviour of the cross section is smoothed
and should not forbid the phenonemological application
of NLL calculations.

We can also see from Fig. 2 how much NLL corrections
modify the xγ distribution which is proportional to δ(1−
xγ) at the LL accuracy. NLL corrections generate terms
with xobsγ or xLLγ different from 1 and the simple picture
of a photon directly interacting with a quark of the hard
subprocess at xγ = 1 is lost. But one must also keep in
mind that the separation of the cross section dσ/dxobsγ into
a direct part and a resolved part is factorization scheme
dependent and that dσdirect/dxobsγ has no physical sense
on its own (the same remark is valid for xLLγ ).

To study this problem we computed the observable
dσ/dxLLγ in two factorization schemes, the so-called DISγ
and MS ones. For the resolved part, we used for the former
case the GRV distributions of quarks inside the photon
and for the latter the AFG distributions. (Here we also use
the ABFOW proton distributions). We can see that both
the direct and resolved part are very different in these two
schemes (Fig. 3), but that this difference is much smaller
for the total cross section which is factorization scheme
independent. The remaining difference partly comes from
different hadronic inputs in the two sets of distributions.

We now turn to the study of the gluon contents of the
photon and to the possibility of constraining it through

1 Note that the shape of the cross sections around xγ = 1 de-
pends on the width of the xγ-bin, because the Born and virtual
contributions are proportional to δ(1− xγ). If the width is too
small, the cross section may even be negative (the positive real
contributions do not compensate anymore the negative virtual
contributions)

the observation of the distribution dσ/dxobsγ . The sensi-
tivity of dσ/dxobsγ to the gluon distribution does not only
depend on the value of xobsγ , but also on the various kine-
matical cuts imposed on the 2-jet phase space. Clearly the
region of positive and large rapidities corresponds to small
values of xobsγ and to an enhancement of dσ/dxobsγ . This is
verified in Fig. 4. We divided the rapidity range in the lab
frame for the two leading jets in subintervals: 0 < η < 1
and 1 < η < 2. We have also used asymmetric cuts on the
transverse momenta, as it is done by experimental collab-
orations, in order to avoid the instabilities which appear
when these momenta become close to each other. Then
in each of these rapidity intervals we compared the xobsγ

distribution obtained with the AFG photon density with
cross-sections for which we have artificially reduced and
increased the gluon distribution by 30%. We found that
the influence of the gluon increases with the rapidities
and in fact the differences between these three curves be-
come sizeable only when 1 < η < 2. Indeed an increase
of 30% of the gluon density results in an increase of ap-
proximately 25% for the cross-section around xobsγ = 0.2.
Therefore a determination of the gluon contents of the
photon would require to use such cuts on rapidities. Such
a study would be able to test the gluon density F g

γ (x) in
the region x ≈ 0.2 where it is very poorly known.

5 Comparison with H1 and ZEUS data

In this section we analyse recent H1 and ZEUS data to as-
sess the possibility to put constraints on the gluon distri-
butions in the photon and in the proton. With this inten-
tion we investigate the sensitivity of various cross sections
to changes in the gluon distributions, and we compare
their variations to the experimental errors. In this way we
obtained an estimate of the accuracy with which gluon dis-
tributions can be extracted from present data, and from
future high statistics experiments. We modify the gluon
distributions by increasing or decreasing their normaliza-
tions by a few tens of percents. This method has the ad-
vantage of leaving unchanged the well-determined quark
distributions and to quantify the gluon modifications in a
simple way. Of course gluon distributions are constrained
by other experiments. But, as discussed in the introduc-
tion, the gluon in the photon is not well constrained by
DIS γγ∗ data. As for the gluon in the proton we are going
to study observables sensitive to the distribution at small
x ≈ 0.02. In this region the gluon is pinpointed by the
slope of F2 and it was shown by the CTEQ collaboration
that a variation of about ±10% of F g

p in this region and at
a scale of 100 GeV would cause clear disagreements with
DIS plus Drell-Yan data [26]. However this conclusion was
not obtained by performing an error analysis but only by
tuning gluon parametrisation, which might artificially re-
duce the range of variation by being too restrictive. A
more recent study obtained a gluon density 30% bigger
than CTEQ4M about x ≈ 0.02 and at a scale of 20 GeV
[27]. Errors on the gluon determination are also presented
in [19]. Thus we think that it is interesting to find how
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a Direct contribution b Resolved contribution

c Total contribution

Fig. 3a–c. Distribution dσ/dxLL
γ for the direct, resolved and

total contributions with the AFG (MS scheme) and GRV
(DISγ scheme) photon density as well as ABFOW proton
density, with the following cuts on the two high ET jets:
ET > 9.2 GeV and −1 < η < 2, and using a cone algorithm
with R = 1 and no Rsep to define the jets

much photoproduction can constrain this density in this
x-range.

The interested reader may find more global compar-
isons between theory and data in [20,22,23]. The inputs
we use in this section have been defined in Sect. 3 where
we computed single-jet cross sections. More details on the
kinematical parameters used for dijet cross sections are
given below2.

2 To follow H1 and ZEUS conventions, we call jet 1 and jet
2 the jets with the highest energies; we used the labels 3 and
4 in the preceeding sections

The ZEUS collaboration presents cross sections which
depend on the jet transverse momenta, or on the jet ra-
pidities [23]. Therefore we do not have a direct access to
dσ/dxobsγ , however we can study data corresponding to re-
gions of the jet phase space in which the role of the gluon
in the photon or that of the gluon in the proton is en-
hanced. These regions are essentially defined by large or
small values of the jet rapidities: large rapidities corre-
spond to small xγ and small rapidities to small xp (see
the LL expressions for xp and xe below formula (2)).

Let us start with the case of large jet rapidities. Exper-
iment and theory are compared in Fig. 5. The dijet cross
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Fig. 5. The cross section dσ/dη2 compared with ZEUS data
[23]. (Full error bars: statistical errors; dashed error bars: sys-
tematic errors including energy-calibration errors). Full line:
.5 ≤ y ≤ .85. Dotted lines: .45 ≤ y ≤ .85 (upper) and
.55 ≤ y ≤ .85 (lower). The dashed line is obtained with the
distribution g/γ increased by 20%

sections in this figure correspond to events with at least
one jet with transverse energy larger than 14 GeV, the
transverse energy of the other jet being larger than 11
GeV; it is integrated over 1 < η1 ≤ 2. The real photon
kinematical domain is specified by Q2

max = 1 GeV2 and
.5 < y < .85 (cf expression (1)). The jets are defined with
the kT -algorithm [15] and the scales M and µ are set equal
to the transverse energy of the most energetic jet.

To test the sensitivity of dσ/dη2 to the gluon density in
the photon, we increased the gluon distribution uniformly
by a factor of 1.2. Comparing the full and dashed curves,
we see that this factor produces an increase of the cross
section for large values of η2 by some 10%. As expected
the backward region, corresponding to large values of xγ ,
is not affected; the gluon distribution in the photon de-
creases much faster than the quark distributions. In this
region dσ/dη2 rapidly varies with η2 and better compar-
ison with data is obtained by integrating dσ/dη2 in the
experimental bins. This has been done for the two bins:
−1. ≤ η2 ≤ −.5 and −.5 ≤ η2 ≤ .0. The agreement be-
tween theory and data is quite good in the second bin but
the data at larger η2 favor a larger gluon distribution in
the proton. But one must notice that the present exper-
imental errors are larger than the effect produced by an
increase of the gluon distribution by 20%. In the back-
ward region, a clear discrepancy appears which could be
attributed to hadronization effects as discussed in [24].

It is also worth again noting the great sensitivity of
the cross section to the y-range of the photon. The energy
of the incoming photon is reconstructed from the final
hadron energies with the Jacquet-Blondel method. Vari-
ous corrections have to be applied to this “photon energy”
y

JB
in order to obtain the true photon energy y [25]. In

Fig. 5 we show the effect of a 10% error on the determina-
tion of the lower bound of the y variable. It is very large
for negative values of η2. Even in the forward region, this
10% error produces an effect much larger than the 20%
variation of the gluon distribution. Actually this “error” is
included in the discussion of the systematic errors quoted
in [25]. But because the dispersion of y

JB
around y may

reach 10%, a better theoretical prediction could be ob-
tained by taking into account the dispersion of the upper
and lower bounds of the variable y.
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Fig. 6. The cross section dσ/η2 compared with ZEUS data
[23]. (Full error bars: statistical errors; dashed error bars: sys-
tematic errors including energy-calibration errors). Full line:
.2 ≤ y ≤ .85. Dotted line: .2 ≤ y ≤ .80. The dashed line is
obtained by reducing the distribution g/P by 20%

In Fig. 6 we present the results of a similar study done
for negative values of η1. In this kinematical range, we can
infer from Fig. 6 that the cross section depends very lit-
tle on moderate changes of the gluon distribution in the
photon. Therefore this kinematical range is well-suited for
a study of the gluon in the proton at xp ∼ 2ET /2Ep ∼
15/880 = .018. Here we choose data corresponding to the
following y-range: .2 < y < .85. Also displayed are predic-
tions obtained for .2 ≤ y ≤ .8, and those obtained with a
gluon distribution in the proton multiplied by a factor .8.
We see that a small modification of the y-range produces
an effect similar to a change of the gluon distribution by
20%. Here again, the experimental errors are larger than
the effects due to a modification of the theoretical inputs,
but there is a slight indication that data prefer a smaller
gluon distribution in the proton.

Finally we turn to the ET -spectrum obtained by the
ZEUS collaboration. Here again we choose to study the
large rapidity region with the dijet cross section integrated
over the ranges 1 ≤ η1 ≤ 2 and 1 ≤ η2 ≤ 2:

dσ/dEleading
T =

∫ 2

1
dη1

∫ 2

1
dη2

dσ

dEleading
T dη1 dη2

(8)

Eleading
T is the transverse energy of the leading jet (highest

ET ). The transverse energy of the other jet is constrained
by the condition 11 GeV < ET < Eleading

T . Our results are
shown in Fig. 7. Predictions for the range .25 ≤ y ≤ .85
and for a gluon in the photon increased by 20% are also
shown. A slightly better agreement with data is obtained
in the latter case (hardly distinguishable on a logarithmic
plot).

The H1 collaboration presented results [20] under a
form which is very close to the one advocated in the pre-
ceding section; the authors chose to give the cross section
dσ/(dxobsγ d Log((Ejets

T )2/GeV2)) with the definitions

Ejets
T =

ET1 + ET2

2
(9)

10 20 30 40 50 60
0

0

1

10

100

TTE
leading

(GeV)
d σ

/d
E

le
ad

in
g

T
(p

b/
G

eV
)

1 < η  < 2

1 < η  < 2
1

2

.20 < y < .85

Fig. 7. The cross section dσ/dEleading
T compared to ZEUS

data [23]. (In this figure the energy-calibration errors are not
included in the error bars). Full line: .20 ≤ y ≤ .85. Dotted
line: .25 ≤ y ≤ .85. The dashed line is obtained by increasing
the gluon distribution g/γ by 20%

where ET1 and ET2 are the transverse energies of the two
jets with the highest transverse energies in an event. Other
kinematical requirements are

|ET1 − ET2|
2Ejets

T

< .25

0 <
η1 + η2

2
< 2

|η1 − η2| < 1 . (10)

The cuts on the “real” photon variables are Q2
max =

4 GeV2 and .2 < y < .83. We use a cone algorithm [21]
with R = .7 and no Rsep in agreement with [20]. Moreover
we avoid double counting of jet configurations by choosing
the jet of highest ET (made of two partons) when the par-
ton configuration also allows to construct two jets (made
of one parton each). The scales M and µ are set equal to
Ejets
T .
In Fig. 8 we compare our results with H1 data in the

range 2.30 < Log
(
Ejets

T

GeV

)2
≤ 2.50 where Ejets

T is large
enough to allow us to neglect (in a first approximation)
hadronisation effects and underlying event contributions.
A good agreement3 is obtained with data, except for xobsγ

3 Unlike other observables, here we disagree with the predic-
tions of [22]. Our values are higher at small xobs

γ , by a few tens
of percents; this cannot be explained by the different values
of Nf used in the calculations (4 flavors in [22] and 5 in this
paper)
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range 2.3 ≤ Log(Ejet

T /GeV)2 ≤ 2.5 [20]. Full curve: .2 ≤ y ≤
.83; dashed curve: .25 ≤ y ≤ .83

close to one (the “Direct” domain) where theory over-
shoots data. It must be again noted that the theoret-
ical curve is very sensitive to the photon energy range
y = Eγ/Ee. A change of the lower limit from y = .20 to
y = .25 leads to the dashed line in Fig. 8; the cross sec-
tion decreases for xobsγ  1.0. However it is unlikely that
the disagreement for xobγ ∼ 1 between theory and H1 data
could be explained by a dispersion of the upper and low
bounds in y. (The variation of ylow by 25% studied above is
certainly bigger than the experimental systematic error).
A decrease of the gluon distribution in the proton would
decrease dσ/dxobsγ in all bins in xobsγ . It is compatible with
data at low xobsγ , but its effect at large xobsγ is not suffi-
cient to put theory in agreement with data. The resolved
contribution is also important in the highest xobsγ -bin, a
kinematical region which explores the quark contents of
the photon at large xγ . In this domain the quark distri-
bution is given by the pointlike component (non pointlike
contributions of the “Vector Meson Dominance” type are
negligible) which cannot be modified in an arbitrary way,
and adjusted to data. For instance the difference between
the AFG and GRV parametrization is small in this region
(see Fig. 3).

The first conclusion that we can draw from this study
of H1 and ZEUS data is that overall there is a good agree-
ment between experiment and theory. However the sys-
tematic errors are non-negligible and correspond roughly
to variations of the theoretical predictions coming from
modifications by ± 20% of the gluon distribution normal-
izations. Therefore it appears difficult to constrain the
gluon distributions with an accuracy better than a few
tens of per cents with the present data.

Part of the errors should cancel in the ratio

dN/dxobsγ =
dσ/dxobsγ∫ 1

0 dxobsγ dσ/dxobsγ

(11)

which could allow a better determination of the x shape of
the distributions functions. However we would thus loose
any information on the absolute normalization.

6 Conclusions

In this paper we described a new NLL event generator
for photoproduction reactions involving the direct and re-
solved contributions, and we used it to assess the possibil-
ity to measure the quark and gluon contents of the photon
from photoproduction experiments. (Actually we assumed
that the quark distributions in the photon were fixed from
γγ∗ DIS experiments and we concentrated on the gluon
contents).

The cross section dσ/dx̄γ , where x̄γ is related to the
scaled momentum xγ of partons in the photon, is quite
appropriate to a study of these contents. We discussed two
definitions of x̄γ : x̄γ = xobsγ , the well-known definition of
the ZEUS collaboration, and x̄γ = xLLγ , a variable which
reduces problems of infrared sensitivity. Then we showed
that the cross section dσ/dxobsγ is sensitive to the gluon
density of the photon only if we require the two jets with
the highest transverse energy to have positive rapidities.

A relatively good agreement between theory and ex-
periment is found when confronting the predictions, ob-
tained with the CTEQ4M and GRV distributions, with
H1 and ZEUS data. It is interesting to note that H1 and
ZEUS data are compatible with a 20% increase of the
gluon contents of the photon (Fig. 6, η1 ∼ 1.5, Fig. 8,
Eleading
T ∼ 20 GeV) and with a 20% decrease of the gluon

contents of the proton (Fig. 5, xobsγ ∼ 1 where the direct
contribution is important; Fig. 7). Unfortunately this re-
mark cannot be made more quantitative, because the sys-
tematic errors, essentially coming from the uncertainties
in the measurement of the jet energies, are large and of
the same order as the variations of the theoretical predic-
tions due to gluon distribution modifications. One must
also keep in mind the great sensitivity of the cross section
to the photon energy-range. The knowledge of the resolu-
tion of the variable y (obtained from the Jacquet-Blondel
variable yJB) should allow a more accurate prediction.
However it is interesting to remark that 1996 and 1997
preliminary ZEUS data [25] also favor a larger gluon dis-
tribution in the photon.

Until now we have not discussed the theoretical un-
certainties coming from the scale dependence of the cross
sections. These uncertainties were carefully studied in [9]
and in [22], and found to be of the order of a few tens
of percents for large variations of the values of the fac-
torization and renormalization scales. In this paper we
continue this study by looking at the sensitivity of the
cross section dσ/(dxobsγ dLog(Ejets

T )2) which can be com-
pared with H1 data (Fig. 5); we make this study for the
range .75 ≤ xobsγ ≤ 1 and with the kinematical conditions
of Fig. 5. The scales are M = µ = κEjets

T and κ is varied
between .5 and 2. Our results are summarized in Table 1.

We note that the cross section dσ/dxobsγ is quite stable
and varies by less than 5% when the scales M2 = µ2 vary
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Table 1. The sensitivity of the direct and resolved photopro-
duction cross-sections to the renormalization and factorization
scale M = µ = κ · Ejets

T (normalized to the total contribution
at κ = 1.0)

κ Direct Resolved Total
contribution contribution contribution

0.5 0.634 0.384 1.018
0.75 0.578 0.432 1.010
1.00 0.547 0.453 1.000
1.50 0.512 0.474 0.986
2.00 0.491 0.482 0.973

by a factor 16. The theoretical errors appear to be well
under control, at least for this observable.

So we can conclude that, in the future, the possibil-
ity to accurately determine the gluon distribution in the
photon relies on the possibility to improve the experimen-
tal systematic errors. In the future also statistics will be
larger and higher ET regions will be accessible. The cor-
responding data will put more constraints on the parton
distributions.
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